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Based on

• Yoon Pyo Hong and OG, “S-duality and Chern-Simons
Theory,” [arXiv:hep-th/0812.1213]

• Yoon Pyo Hong and OG, “From S-Daulity to Chern-Simons
Theory via Minimal Strings, and Minimal Strings”
[arXiv:hep-th/0904.????]
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S-duality

τ ≡
4πi
g2
YM

+
θ

2π

s =


a b

c d


 ∈ SL(2,Z)

τ → aτ + b
cτ + d

.
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S-duality’s action on states

Temporal gauge: A0 = 0.

Ψ̃(A) ≡
∫

[DÃ]S(A, Ã)Ψ(Ã)

τ →
aτ + b
cτ + d

, Ei → aEi + bBi , Bi → cEi + dBi .

[Lozano; Gaiotto & Witten]

S(A, Ã) = exp
{

i

4πc

∫
(dA ∧ dA− 2Ã ∧ dA+ aÃ ∧ dÃ)

}
.

ẼiS = S(aEi + bBi), B̃iS = S(cEi + dBi).

Ei ≡ −2πiδ/δAi
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U(1) Chern-Simons from S-duality

Ψ̃{A} ≡
∫

[DÃ]S(A, Ã)Ψ(Ã)

S(A, Ã) = exp
{

i

4πc

∫
(dA ∧ dA− 2Ã ∧ dA+ aÃ ∧ dÃ)

}
.

A = Ã =⇒ I(A) ≡ a + d− 2
4πc

∫
A ∧ dA .

CS level: k ≡ (a + d− 2)/c.

Physical interpretation?
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Selfduality

τ =
aτ + b
cτ + d

=⇒ cτ + d = eiυ.

At a selfdual τ we can compactify on a circle with an S-twist.
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periodic time

S

s ≡


a b

c d


 =


 0 −1

1 0




τ → − 1
τ |k| =

∣∣a+d−2
c

∣∣ = 2 s

τ = i

υ = π
2

s ≡


a b

c d


 =


 1 −1

1 0




τ → τ−1
τ |k| =

∣∣a+d−2
c

∣∣ = 1 s
τ = eπi/3

υ = π
3

s =


 −1 1

−1 0




τ → τ−1
τ |k| = 3 s

τ = eπi/3

υ = −2π
3
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N = 4 Super Yang-Mills

Aµ gauge field µ = 0 . . . 3

ΦI adjoint-valued scalars I = 1 . . . 6

ψa
α adjoint-valued spinors a = 1 . . . 4 and α = 1, 2

ψaα̇ complex conjugate spinors a = 1 . . . 4 and α̇ = 1̇, 2̇

Qaα SUSY generators a = 1 . . . 4 and α = 1, 2

Q
a

α̇ complex conjugate generators a = 1 . . . 4 and α̇ = 1̇, 2̇

Z1 = Φ1 + iΦ4, Z2 = Φ2 + iΦ5, Z3 = Φ3 + iΦ6.

8



Supersymmetry

s : τ →
aτ + b
cτ + d

s : Qaα →
(

cτ + d
|cτ + d|

)1/2

Qaα = e
iυ
2 Qaα

[Kapustin & Witten]

s =


 0 1

−1 0


 =⇒ υ =

π

2
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R-Symmetry

Spin(6) ' SU(4)

γ ≡




eiϕ1

eiϕ2

eiϕ3

eiϕ4




∈ SU(4) ,

(∑

a

ϕa = 0

)
,

acts as

γ(ψa
α) = eiϕaψa

α , γ(ψaα) = e−iϕaψaα , a = 1 . . . 4.

γ(Zk) = ei(ϕk+ϕ4)Zk , k = 1 . . . 3.
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Combined R-S- action

Qaα → e
iυ
2 −iϕaQaα .

=⇒ N = 2r invariant generators

r = #{a for which eiϕa = eiυ/2}
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R- and S- twisted boundary conditions

-x�@
γ

Φ(x = 0−) = γ[Φ(x = 0+)]

Zk(x = 0−) = ei(ϕk+ϕ4)Φ(x = 0+), k = 1, 2, 3

· · ·

-t�@s
Ψ(A, . . . )|t=0+ =

∫
[DÃ]S(A, Ã)Ψ(Ã, . . . )|t=0−
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γ

eiυ ≡ cτ + dγ = R-symmetry twist

SUSY in 2+1D
=⇒ N = 2r, r = #{a for which eiϕa = eiυ/2}

γ =




e
i
2 υ

e
i
2υ

e
i
2 υ

e−
3i
2 υ




=⇒ N = 6

γ =




e
i
2 υ

e
i
2υ

e−i(υ+ϕ4)

eiϕ4




=⇒ N = 4
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N = 4 SYM

s

γ

s(a,b, c,d)
γ(υ)

N = 6
in 2+1D

IR???

s ≡


a b

c d


 =


 0 −1

1 0




τ → − 1
τ s

τ = i

υ = π
2
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N = 4 SYM

s

γ

s(a,b, c,d)
γ(υ)

N = 6
in 2+1D

IR???

s ≡


a b

c d


 =


 0 −1

1 0




τ → − 1
τ s

τ = i

υ = π
2

s ≡


a b

c d


 =


 1 −1

1 0




τ → τ−1
τ s

τ = eπi/3

υ = π
3

s =


 −1 1

−1 0




τ → τ−1
τ s

τ = eπi/3

υ = −2π
3
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N = 4 SYM

s

γ

s(a,b, c,d)
γ(υ)

N = 6
in 2+1D

IR???

s ≡


a b

c d


 =


 0 −1

1 0




τ → − 1
τ CS at k = 2? s

τ = i

υ = π
2

s ≡


a b

c d


 =


 1 −1

1 0




τ → τ−1
τ CS at k = 1? s

τ = eπi/3

υ = π
3

s =


 −1 1

−1 0




τ → τ−1
τ CS at k = 3? s

τ = eπi/3

υ = −2π
3
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Moduli

Z ≡ Z1 ≡ φ1 + iφ4

BPS operators:

Op ≡ g−p
YM tr(Zp) , p = 1, 2, . . .

These operators are SL(2,Z)-duality invariant [Intriligator].

Action of R-symmetry twist:

(Op)γ = eipυOp .

Op is single-valued if and only if eipυ = 1.
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Moduli . . .

• for τ = i and s =


 1 −1

1 0


, 〈Op〉 6= 0 requires p ∈ 4Z;

• for τ = eπi/3 and s =


 1 −1

1 0


 〈Op〉 6= 0 requires p ∈ 6Z;

• for τ = eπi/3 and s =


 −1 1

−1 0


 〈Op〉 6= 0 requires p ∈ 3Z.

For U(n), On+1,On+2, . . . are not independent of O1, . . . ,On. Thus
for τ = i and s = s′, for example, if n < 4 none of the operators Op

can get a VEV.
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States on T 2 from String Theory

type brane 1 2 3 4 5 6 7 8 9 10

IIB D3 = = × | T on 1:

IIA D2 ◦ = × | to M:

M M2 ◦ = × ◦ on 2:

IIA F1 ◦ | × ◦

Legend:

| direction doesn’t exist in the theory;

= a direction that the brane wraps;

× a direction that the brane wraps and has the S-R-twist;

◦ a compact direction that the brane doesn’t wrap;
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Counting fixed-points

type brane 1 2 3 4 5 6 7 8 9 10

IIB D3 = = × |

IIA F1 ◦ | × ◦

τ = i =⇒ gIIB = 1 =⇒ R1 = R10.

Directions 1, 10 form a T 2 of complex structure τ ;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;
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Counting fixed-points . . .

Directions 1, 10 form a T 2 of complex structure τ ;

F1-strings are n points in directions 1, 10;

F1-strings are wound in direction 3;

S-R-twist is entirely geometrical!

It is a rotation by υ = π/2 of T 2;

Need to find fixed points of this rotation (up to Sn);

{zσ(1), . . . , zσ(n)} = {z1, . . . , zn} up to Z + Zτ ;

One Ramond-Ramond ground state for each fixed point.
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T 2 (directions 1, 10) fibered over S1 (direction 3):
Geometrical twist and wound string

�
�

�
��
��

1

610

q rr

- 3

XT 2(τ )

S1

20



T 2 (directions 1, 10) fibered over S1 (direction 3):
Geometrical twist and wound string
Minimal energy configuration: find fixed points of twist!

�
�

�
��
��

1

610

qr
- 3

XT 2(τ )

S1

20



T 2 (directions 1, 10) fibered over S1 (direction 3):
Geometrical twist and wound string
Minimal energy configuration: find fixed points of twist!

Here’s another fixed point.

�
�

�
��
��

1

610

q
r

- 3

XT 2(τ )

S1
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Allowing lattice translations . . .
610

-1

r t
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Allowing lattice translations . . .
610

-1

r td
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n = 1 fixed points
610

-1

r te
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n = 1 fixed points
610

-1

rte
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n = 2 fixed sets
610

-1

rte te
�
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n = 2 fixed sets
610

-1

rte dte
@
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n = 2 fixed sets
610

-1

rte td e
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n = 2 fixed sets
610

-1

r tete
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n = 2 fixed sets: accounting for multiplicity
610

-1

rxei

24



n = 2 fixed sets: accounting for multiplicity
610

-1

rxei

2 = 1 + 1
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n = 2 fixed sets: accounting for multiplicity
610

-1

r|eim

3 = 2 + 1 = 1 + 1 + 1
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Counting number of ground states

(Singlet RR ground state)

υ = π
2

n = 1

n = 2

n = 3

pc
1 pc1

Ns = 2

pce
2 pce2

pc pc1 pc pc
1

Ns = 6

pceg
3

pce pc2

pc pce2 pceg3

pcpcpc
1

pcpc pc1
Ns = 12
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Counting number of ground states

(Singlet RR ground state)

υ = π
3

n = 1

n = 2

n = 3

n = 4

n = 5

pc 1
Ns = 1

pce 2 pc pc1
Ns = 3

pceg 3 pc pc pc1 pcpc pc1 Ns = 5

pcegi5 pce pc pc2 pc pcpc pc1 pce pce2
Ns = 10

pcegik7 pceg pc pc3 pce pcpc pc2 pceg pce2 pc pcpcpc pc1 Ns = 15
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Number of states for U(n) on T 2

n

τ υ |k| 1 2 3 4 5

eiπ/3 π
3 1 1 3 5 10 15

i π
2 2 2 6 12

eiπ/3 −2π
3 3 3 9
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Number of states for U(n) on T 2

n

τ υ |k| 1 2 3 4 5

eiπ/3 π
3 1 1 3 5 10 15

i π
2 2 2 6 12

eiπ/3 −2π
3 3 3 9

Chern-Simons:
U(1) level k: Ns = k.
SU(2) level k: Ns = k + 1.
SU(3) level k: Ns = (k + 1)(k + 2)/2.
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Z/2Z winding number

XT 2(τ )

S1

T 2s��
�

@
@

@

@
@

@

�
�

�
a

b

a
b


 =


 b

−a




H1(X) = Z ⊕ Z/2Z

�
�

H1(S1)
[x]

{0, a}

Homology of string configuration: nx+ wa, w ∈ Z/2Z
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For n = 1:

eiπw| qc 〉 = | qc 〉, eiπw| qc 〉 = −| qc 〉.

For n = 2:

eiπw| qce 〉 = | qce 〉, eiπw| q qc c 〉 = −| q qc c 〉, eiπw| qce 〉 = | qce 〉.
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Z/2Z momentum

XT 2(τ )

S1

T 2s
�

�
��

eiπp = translation in the fiber.
p ∈ Z/2Z
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For n = 1:

eiπp| qc 〉 = | qc 〉, eiπp| qc 〉 = −| qc 〉.

For n = 2:

eiπp| qce 〉 = | qce 〉, eiπp| q qc c 〉 = −| q qc c 〉, eiπp| qce 〉 = | qce 〉.

eiπpeiπw = (−1)neiπweiπp

In n = 1 Chern-Simons theory:

eiπp −→ e
∮

a′ A , eiπw −→ e
∮

b′ A .
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Ch

Riemann surface
area A

S-twist

S
�@γ

& R-twist

S1

0 ≤ x3 < 2πR

�@

A → 0 =⇒ σ-model on MH

S-duality becomes T-duality [Bershadsky & Johansen & Sadov &
Vafa; Harvey & Moore & Strominger]
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Witten Index

#{vacua of 2+1D theory on Ch} = I = tr0{(−1)FT (s)γ} .
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Hitchin’s equations

Fzz = [φz, φz]

Dzφz = Dzφz = 0

Az

φz

gauge field
adj.-valued 1-form

Ch

Riemann surface
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Hitchin’s equations

Fzz = [φz, φz]

Dzφz = Dzφz = 0

Az

φz

gauge field
adj.-valued 1-form

Ch

Riemann surface

bzz = tr(φ2
z) holomorphic with 4h− 4 zeroes.

Space of quadratic differentials: C3(h−1)

q
q

q
q
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Hitchin’s equations

Fzz = [φz, φz]

Dzφz = Dzφz = 0

Az

φz

gauge field
adj.-valued 1-form

Ch

Riemann surface

bzz = tr(φ2
z) holomorphic with 4h− 4 zeroes.

Space of quadratic differentials: C3(h−1)

q
q

q
q

Double cover has genus 4h− 3

Prym subspace of its Jacobian: T 6(h−1)
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Hitchin Fibration

Base:
bzz = tr(φ2

z)

H3(C,K⊗2) ' C3(h−1)

r
bzz = 0

T 6(h−1)singular
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Hitchin Fibration

Base:
bzz = tr(φ2

z)

H3(C,K⊗2) ' C3(h−1)

r
bzz = 0

T 6(h−1)singular

-� R-symmetry

6

?

S-duality

[Kapustin & Witten]
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The fiber pver bzz = 0 . . .

bzz = tr(φ2
z) = 0

Case 1: φz = 0 =⇒ Mfc = moduli space of flat connections.

Case 2: φz =


 0 αz

0 0


 , Az =


 az cz

0 −az


 ,

az = −1
2
∂z logαz ,

∂zaz − ∂zaz = |αz|2 + |cz|2, and
c∗z
αz

= holomorphic.

Special subcase of 2: cz = 0.
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The fiber pver bzz = 0 . . .

bzz = tr(φ2
z) = 0

Case 1: φz = 0 =⇒ Mfc = moduli space of flat connections.

Case 2: φz =


 0 αz

0 0


 , Az =


 az cz

0 −az


 ,

az = −1
2
∂z logαz ,

∂zaz − ∂zaz = |αz|2 + |cz|2, and
c∗z
αz

= holomorphic.

Special subcase of 2: cz = 0.
if also genus h = 2: αz has a single simple zero on C2 which
determines the solution uniquely up to gauge.
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The fiber over bzz = 0 . . .

bzz = 0

Mfc

copy of C
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T-duality and Geometric Quantization

&%
'$

�@T

γ

1+1D σ-model with target space X
T = T-duality (mirror symmetry) twist
γ = some isometry twist

IR?

Geometric quantization on γ-invariant subspace???
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The fiber over bzz = 0 . . . . . .

bzz = 0

Mfc

copy of C
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The fiber over bzz = 0 . . . . . .

bzz = 0

Mfc

copy of C

@
@

@
@I

�������

γ-invariant
subspace

HHHHj

geometric
quantization
on this

�@
Chern-Simons
(ground) states
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Conclusions

• Compactification of N = 4 U(n) SYM on S1 with an S-duality
twist, at a self-dual τ seems to give a topological 2+1D QFT in
IR for n sufficiently small;

• Number of (ground) states on T 2 can be computed by string
dualities;

• Number of (ground) states on Ch (h > 1) could be computed if
we could determine the signs in the action of S-duality on
H∗(MH );
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Open questions

• What is this topological 2+1D theory?

• Wilson lines?

• Mirror symmetry twist and geometric quantization?

• Nonlocal topological structure from the kernel S(A,AD)?
(Simple argument suggests that correlation functions of pairs of
Wilson lines is proportional to the linking number.)

• Can we extract any new clues about S-duality from this?
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Thank you!
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Title
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